Search results

1 – 3 of 3
Content available
Article
Publication date: 7 March 2019

Joshua R. Muckensturm and Dave C. Longhorn

This paper introduces a new heuristic algorithm that aims to solve the military route vulnerability problem, which involves assessing the vulnerability of military cargo flowing…

1158

Abstract

Purpose

This paper introduces a new heuristic algorithm that aims to solve the military route vulnerability problem, which involves assessing the vulnerability of military cargo flowing over roads and railways subject to enemy interdiction.

Design/methodology/approach

Graph theory, a heuristic and a binary integer program are used in this paper.

Findings

This work allows transportation analysts at the United States Transportation Command to identify a relatively small number of roads or railways that, if interdicted by an enemy, could disrupt the flow of military cargo within any theater of operation.

Research limitations/implications

This research does not capture aspects of time, such as the reality that cargo requirements and enemy threats may fluctuate each day of the contingency.

Practical implications

This work provides military logistics planners and decision-makers with a vulnerability assessment of theater distribution routes, including insights into which specific roads and railways may require protection to ensure the successful delivery of cargo from ports of debarkation to final destinations.

Originality/value

This work merges network connectivity and flow characteristics with enemy threat assessments to identify militarily-useful roads and railways most vulnerable to enemy interdictions. A geographic combatant command recently used this specific research approach to support their request for rapid rail repair capability.

Details

Journal of Defense Analytics and Logistics, vol. 3 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 26 June 2019

Dave C. Longhorn and Joshua R. Muckensturm

This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply…

1064

Abstract

Purpose

This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply chain network design problem that involves determining the amount of capacity expansion required at theater nodes to ensure the on-time delivery of military cargo.

Design/methodology/approach

Supply chain network design, mixed integer programs, heuristics and regression are used in this paper.

Findings

This work helps analysts at the United States Transportation Command identify what levels of throughput capacities, such as daily processing rates of trucks and railcars, are needed at theater distribution nodes to meet warfighter cargo delivery requirements.

Research limitations/implications

This research assumes all problem data are deterministic, and so it does not capture the variations in cargo requirements, transit times or asset payloads.

Practical implications

This work gives military analysts and decision makers prescriptive details about nodal capacities needed to meet demands. Prior to this work, insights for this type of problem were generated using multiple time-consuming simulations often involving trial-and-error to explore the trade space.

Originality/value

This work merges research of supply chain network design with military theater distribution problems to prescribe the optimal, or near-optimal, throughput capacities at theater nodes. The capacity levels must meet delivery requirements while adhering to constraints on the proportion of cargo transported by mode and the expected payloads for assets.

Details

Journal of Defense Analytics and Logistics, vol. 3 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 26 October 2021

Dave C. Longhorn, Joshua R. Muckensturm and Shelby V. Baybordi

This paper recommends new criteria for selecting seaports of embarkation during military deployments. Most importantly, this research compares the current port selection…

Abstract

Purpose

This paper recommends new criteria for selecting seaports of embarkation during military deployments. Most importantly, this research compares the current port selection criterion, which is to select the seaport with the shortest inland transport time from the deploying installation, to the proposed port selection criteria, which are to select the seaport based on the shortest combined inland and oceanic transit time to the destination theater.

Design/methodology/approach

The authors construct an original integer program to select seaports that minimize the expected delivery timeline for a set of notional, but realistic, deployment requirements. The integer program is solved considering the current as well as the proposed port selection criteria. The solutions are then compared using paired-samples t-tests to assess the statistical significance of the port selection criteria.

Findings

This work suggests that the current port selection criterion results in a 10–13% slower delivery of deploying forces as compared to the proposed port selection criteria.

Research limitations/implications

This work assumes deterministic inland transit times, oceanic transit times, and seaport processing rates. Operational fluctuations in transit times and processing rates are not expected to change the findings from this research.

Practical implications

This research provides evidence that the current port selection criterion for selecting seaports for military units deploying from the Continental United States is suboptimal. More importantly, logistics planners could use these recommended port selection criteria to reduce the expected delivery timelines during military deployments.

Originality/value

Several military doctrinal references suggest that planners select seaports based on habitual installation-to-port pairings, especially for early deployers. This work recommends a change to the military's current port selection process based on empirical analyses that show improvements to deployment timelines.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

1 – 3 of 3